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Abstract

This paper presents an analytical model to compute the
average service time and jitter experienced by a packet
when transmitted in a saturated IEEE 802.11 ad hoc net-
work. In contrast to traditional work in the literature, in
which a distribution is usually fitted or assumed, we use
a bottom-up approach and build the first two moments of
the service time based on the IEEE 802.11 binary exponen-
tial backoff algorithm and the events underneath its opera-
tion. Our model is general enough to be applied to any type
of IEEE 802.11 wireless ad hoc network where the channel
state probabilities driving a node’s backoff operation are
known. We apply our model to saturated single-hop ad hoc
networks under ideal channel conditions. We validate our
model through extensive simulations and conduct a perfor-
mance evaluation of a node’s average service time and jit-
ter for both direct sequence and frequency-hopping spread
spectrum physical layers.

1. Introduction

During the past few years we have witnessed an ever-
growing interest in wireless technologies and their appli-
cation to portable devices. As the number of users of such
technologies has increased, the demand for real-time traffic
and delay-sensitive applications has become more critical.
Along the efforts to satisfy such needs, standards for wire-
less local area networks (WLANs) have been proposed, and
the IEEE 802.11 medium access control (MAC) protocol
[7] is the de facto standard and the most widely used nowa-
days. In the IEEE 802.11, the main mechanism to access
the medium is the distributed coordination function (DCF),
which is a random access scheme based on the carrier sense
multiple access with collision avoidance (CSMA/CA). The
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DCF provides two access schemes: the default, called ba-
sic access mechanism, and an optional, four-way handshake
scheme. The standard also defines the optional point coordi-
nation function (PCF), which is a centralized MAC protocol
that uses a point coordinator to determine which node has
the right to transmit. The PCF suppports collision free and
time bounded services. However, because the PCF cannot
be used in multihop or single-hop ad hoc networks, the DCF
is the access network widely assumed, which implies vary-
ing delays for all traffic. Curiously, the majority of the work
on analyzing the performance of IEEE 802.11 DCF has con-
centrated on its throughput [2, 3, 4, 11] and not much atten-
tion has been given to analyzing its delay.

In this paper, we provide an analytical model to com-
pute the average service time and jitter experienced by a
packet when transmitted in a saturated IEEE 802.11 ad hoc
network. In contrast to traditional work in the literature, in
which a distribution is usually fitted or assumed [3, 5, 6, 8],
we use a bottom-up approach and build the first two mo-
ments of a node’s service time based on the IEEE 802.11
binary exponential backoff algorithm and the events under-
neath its operation. The strength of our model relies on the
fact that it can be applied to many network scenarios. The
key to its successful application is the knowledge of the
channel state probabilities driving a node’s backoff opera-
tion. Here, we apply our model to saturated, single-hop ad
hoc networks with ideal channel conditions, operating un-
der the four-way handshake mechanism of the DCF. For this
case, the channel state probabilities we obtain are based on
the work by Bianchi [2], which provides a set of nonlinear
equations that relates a packet’s collision probability with
its transmission probability (in steady-state). We linearize
Bianchi’s model and find simple equations to these quan-
tities. The reason for our approximation is twofold: ease
of computation and the need to better understand the im-
pact of system parameters on channel and system probabil-
ities (something that is not so clear under a nonlinear sys-
tem of equations). We validate both our model and the lin-
earized system through extensive simulations and conduct
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a performance evaluation of a node’s average service time
and jitter for the direct sequence spread spectrum (DSSS)
and frequency-hopping spread spectrum (FHSS) physical
layers under the same scenario. We investigate their perfor-
mance as we vary such parameters as initial contention win-
dow size, slot time size, packet size, and maximum backoff
stage.

The rest of the paper is organized as follows. Section 2
briefly reviews the DCF mechanism. Section 3 presents our
analytical model. Following that, in Section 4, we validate
our model through simulations. Section 5 presents a perfor-
mance evaluation of both DSSS and FHSS physical layers.
In Section 6 we present our conclusions.

2. The Distributed Coordination Function

The DCF describes two techniques for packet transmis-
sion: the default, a two-way handshake scheme called ba-
sic access mechanism, and an optional four-way handshake
mechanism. In the basic access mechanism, a node moni-
tors the channel to determine if another node is transmit-
ting before initiating the transmission of a new packet. If the
channel is idle for an interval of time that exceeds the dis-
tributed interframe space (DIFS), the packet is transmitted.
Otherwise, the node monitors the channel until it is sensed
idle for a DIFS interval, when it then generates a random
backoff interval for an additional deferral time before trans-
mitting. This collision avoidance feature of the protocol in-
tends to minimize collisions during contention among mul-
tiple nodes. In addition, to avoid channel capture, a node
must wait a random backoff time between two consecutive
new packet transmissions, even if the medium is sensed idle
in the DIFS time.

DCF has a discrete-time backoff timer. The backoff timer
is decremented only when the medium is idle and it is
frozen when the medium is sensed busy. After a busy pe-
riod, the decrementing of the backoff timer resumes only
after the medium has been free longer than a DIFS period.
A transmission takes place when the timer zeros out. The
slot size of the backoff timer is denoted by σ, and equals
the time needed by any node to detect the transmission of
a packet by any other node. It is, therefore, dependent on
the physical layer and accounts for the propagation delay,
the transmit-to-receive turn-around time, and the time to
signal the state of the channel to the MAC layer. At each
packet transmission, the backoff time is uniformly chosen
in the range (0,W − 1). The value W is called the con-
tention window and depends on the number of failed trans-
missions for a packet, i.e., for each packet queued for trans-
mission, the contention window W takes an initial value
Wmin that doubles after each unsuccessful packet transmis-
sion, up to a maximum of Wmax (the values of Wmin and
Wmax are physical-layer specific). The contention window

remains at Wmax for the remaining attempts. This is the so-
called exponential backoff scheme. In the sequel, each at-
tempt to transmit a packet during the exponential backoff
will be referred to as a backoff stage. An ACK is transmit-
ted by the destination node to signal the successful packet
reception. The ACK is immediately transmitted at the end
of the packet, after a period of time called short interframe
space (SIFS). If the transmitting node does not receive the
ACK within a specified timeout, or if it detects the transmis-
sion of a different packet on the channel, it reschedules the
packet transmission according to the given backoff rules.
Figure 1(a) illustrates the basic access mechanism.

The four-way handshake mechanism involves the trans-
mission of the request-to-send (RTS) and clear-to-send
(CTS) control frames prior to the transmission of the actual
data frame. A successful exchange of RTS and CTS frames
attempts to reserve the channel for the time duration needed
to transfer the data frame under consideration. The rules for
the transmission of an RTS frame are the same as those for
a data frame under the basic access scheme. After receiving
an RTS frame, the receiver responds with a CTS frame af-
ter a SIFS. After the successful exchange of RTS and CTS
frames, the data frame can be sent by the transmitter after
waiting for a SIFS interval. In case a CTS frame is not re-
ceived within a predetermined time interval, the RTS is re-
transmitted following the backoff rules as specified in the
basic access procedures described above. The frames RTS
and CTS carry the information of the length of the packet
to be transmitted. This information can be read by any lis-
tening node, which is then able to update a network allo-
cation vector (NAV) containing the information of the pe-
riod of time in which the channel will remain busy. There-
fore, when a node is hidden from either the transmitting or
the receiving node, by detecting just one frame among the
RTS and CTS frames, it can suitably delay further trans-
missions to try to avoid collisions. Figure 1(b) illustrates
the four-way handshake mechanism, which we simply call
the RTS/CTS mechanism.

3. Analytical Model

3.1. Service Time Characterization

As mentioned in Section 2, once a node goes to back-
off, its backoff time counter decrements according to the
perceived state of the channel. If the channel is sensed
idle, the backoff time counter is decremented. Otherwise,
it is frozen, staying in this state until the channel is sensed
idle again for more than a DIFS, at which time its decre-
menting operation is resumed. While the backoff timer is
frozen, only two mutually exclusive events can happen in
the channel: either a successful transmission takes place
or a packet collision occurs. Therefore, if we denote the
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Figure 1. IEEE 802.11 access methods: (a) Basic
Access. (b) RTS/CTS.

three possible events a node can sense during its backoff
by Es = {successful transmission}, Ei = {idle channel},
and Ec = {collision}, each of the time intervals between
two consecutive backoff counter decrements, which we call
“backoff steps”, will contain one of these three mutually ex-
clusive events. In other words, during a node’s backoff, the
j-th “backoff step” will result in either a collision, a trans-
mission, or the channel being sensed idle. We assume that
events in successive backoff steps are independent, which
is a reasonable assumption if the WLAN is relatively large
and if the time a node spends on collision resolution is about
the same as the time the channel is sensed bus due to col-
lisions by noncolliding nodes. In the DCF, a node finds out
that a collision has taken place if it does not receive the
acknowledgment to its transmission after a certain timeout
(the ACK Timeout in the basic access mechanism and the
CTS Timeout in the RTS/CTS mechanism). In other words,
if a collision happens in a backoff step, the colliding nodes
are assumed to go through the collision resolution process in
this same backoff step and, therefore, can be ready for trans-
mission in the following backoff step. This way, we avoid
dependencies on the number of colliding nodes at previous
backoff steps.

Given the above considerations, let k denote the backoff
stage at which a specific node is at a certain instant of time,
and let nk be the number of backoff time slots randomly
chosen at the k-th stage. Assuming that the events Ei, Es,
and Ec have probabilities ps = P{Es}, pi = P{Ei}, and
pc = P{Ec}, respectively, and given that these events are
independent and mutually exclusive at each backoff step,
then the probability that in nk slots we have ri “idle slots”,
rc “collision slots”, and rc “successful slots” is given by the

multinomial probability distribution

P{r |nk,p} =
nk

ri! rc! rs!
pri

i prc

c prs

s , (1)

where r = [ri rc rs]
T , p = [pi pc ps]

T , pi + pc + ps = 1,
and ri + rc + rs = nk. Let t = [σ tc ts]

T , where σ is the
time used when the channel is sensed idle (i.e., one back-
off slot), ts is the average time the channel is sensed busy
due to a successful transmission, and tc is the average time
the channel is sensed busy due to a collision in the chan-
nel. If we denote by T k

B(r;nk) the total backoff time spent
at the k-th backoff stage when ri slots are idle, rc slots
have collisions, and rs slots have successful transmissions
within the randomly chosen nk slots, then

T k
B(r;nk) = rT t = σri + tcrc + tsrs. (2)

Note that the event E = { ri idle slots, rc collision slots,
rs successful slots | nk} is the same as the event E′ =
{backoff timer zeros out after riσ + rctc + rsts time slots
| nk}. Therefore,

P{rT t |nk,p} = P{r |nk,p}. (3)

From the above results, the average time a node spends
at the k-th backoff stage when nk backoff steps are chosen
is simply

T
k

B(nk) = E{T k
B(r;nk) |nk} = E{rT t |nk}

= E{rT |nk}t = [nkpi nkpc nkps]
T t

= nk(σpi + tcpc + tsps), (4)

where T
k

B(nk) indicates that E{T k
B(r;nk) |nk} is a func-

tion of the randomly chosen value nk at the k-th back-
off stage. We can finally compute the average backoff time

T
k

B at the k-th stage by averaging over nk as follows:

T
k

B =
∑Wk−1

nk=0 T
k

B(nk)P{nk} (5)

=
∑Wk−1

nk=0 nk(σpi + tcpc + tsps)/Wk = α(Wk − 1)/2,

where α = σpi + tcpc + tsps. This last result is quite intu-
itive: it simply states that the average time a node spends at
the k-th backoff stage is nothing but the product of the aver-
age number of backoff steps, (Wk−1)/2, times the average
backoff step size α.

We are now able to consider the more general case
of the binary exponential backoff algorithm. Let Rk be a
3 × k matrix whose columns are the k “counting events”
ri, i = 1, 2, . . . , k of each backoff stage up to the k-th
stage, i.e, Rk = [r1 r2 . . . rk]. We are interested in com-
puting P{Rk |nk}, where nk = [n1 n2 . . . nk]T is a col-
umn vector of the number of time slots chosen in each of
the k stages. By our independence assumption, the events
that happen while a node is in its (k − 1)-th backoff stage



are independent of the events that happen while the node is
in the k-th stage. Therefore,

P{Rk |nk} = P{r1 |nk} · P{r2 |nk} · . . . · P{rk |nk}

= P{r1 |n1} · P{r2 |n2} · . . . · P{rk |nk}, (6)

where the last equality expresses the independence, among
stages, on the randomly-chosen number of backoff steps.
Given Rk and nk, the total backoff time can be computed
as follows:

TB(Rk;nk) =
∑k−1

i=1

(

rT
i t + tc

)

+ rT
k t

=
∑k

i=1r
T
i t + (k − 1)tc, (7)

where tc accounts for the time a node spends on collision
resolution (according to our previous remark). We can now
compute the average time it takes to successfully transmit a
packet after k backoff stages:

TB(nk) = E{TB(Rk;nk) |nk} =

=
∑

Rk

[

∑k

i=1r
T
i t + (k − 1)tc

]

P{Rk |nk}

=
∑k

i=1TB(ni) + (k − 1)tc. (8)

By averaging over nk, and observing that the selected
number of backoff steps at a specific backoff stage is inde-
pendent of the selected number of backoff steps at previous
stages, we have that

TB(k) = E{T B(nk)} =
∑

nk
TB(nk)P{nk}

=
∑

nk
TB(nk)

∏k

i=1 P{ni}

=
∑

nk

[

∑k

i=1 TB(ni) + (k − 1)tc

]

∏k

i=1 P{ni}

=
∑k

i=1 T
i

B + (k − 1)tc, (9)

where T
i

B is given by Eq.(5). This last result simply tells
us that the backoff time is a non-linear function of the dis-
crete random variable K of the number of backoff stages
a node has to go through before transmitting a packet suc-
cessfully. Consequently, the backoff time probability dis-
tribution is the same as the probability distribution of the
number of backoff stages K1, which in turn is directly re-
lated to the probability that a packet is succesfully transmit-
ted at the end of the k-th stage. Therefore, if we let qk be
the probability of success that a packet experiences when
it is transmitted at the end of the k-th backoff stage, and
if we make the reasonable assumption that P{packet col-
lides at the k-th stage | packet collided at the 1st, 2nd, . . . ,
(k − 1)-th stages} = P{packet collides at the k-th stage}
then,

P{K = k} =
[

∏k−1
i=1 (1 − qi)

]

qk. (10)

1 In one-to-one mappings of discrete random variables, if y = g(x)
then P{y = y} = P{x = x}[10].

Note that if the probabilities qi are independent of the
backoff stage and constant, i.e., qi = q, ∀ i ∈ N, then we
simply have the geometric distribution

P{K = k} = (1 − q)k−1q. (11)

For simplicity, let us assume from now on that qi =
q, ∀ i ∈ N. In fact, very accurate throughput results were
obtained by Bianchi [2] by assuming a constant and inde-
pendent collision probability. Given that, we can now com-
pute the first two moments of the backoff time TB(k). Let
us start with the average backoff time T B . From Eq.(9), we
have

TB = E{TB(k)} =
∑∞

k=1 TB(k)P{K = k} (12)

=
∑∞

k=1

[(

∑k

i=1 T
i

B

)

+ (k − 1)tc

]

(1 − q)k−1q

=
∑∞

k=1

(

∑k

i=1
α
2 Wi

)

(1 − q)k−1q − α
2q

+ (1−q)
q

tc.

To compute the first term of Eq.(12), we first observe that

Wi =

{

2i−1Wmin if 1 ≤ i ≤ m
2mWmin if m < i

(13)

where m is the “maximum backoff stage”, i.e., the value
such that Wmax = 2mWmin. We can now compute the re-
maining summation in Eq.(12) by splitting it into two terms
as follows:

∑∞
k=1

(

∑k

i=1
α
2 Wi

)

(1 − q)k−1q =

=
∑m

k=1

(

∑k

i=1
α
2 Wi

)

(1 − q)k−1q+

+
∑∞

k=m+1

(

∑k

i=1
α
2 Wi

)

(1 − q)k−1q = S1 + S2.

For S1 we have:

S1 =
∑m

k=1

(

∑k

i=1
α
2 Wi

)

(1 − q)k−1q =

= αWmin

2

{

2q
[

1−[2(1−q)]m

1−2(1−q)

]

+ (1 − q)m − 1
}

.

To find S2, we notice first that, for k = m + 1,

∑k

i=1
αWi

2 = αWmin

2

∑m+1
i=1 2i−1 = αWmin

2

(

2m+1 − 1
)

.

Hence, for k = m + 2,

∑k

i=1
αWi

2 = αWmin

2

[

∑m+1
i=1 2i−1 +

∑m+2
i=m+2 2m

]

= αWmin

2

[(

2m+1 − 1
)

+ 2m
]

.

In general, for k = m + γ,

∑k

i=1
αWi

2 = αWmin

2

[

∑m+1
i=1 2i−1 +

∑m+γ

i=m+2 2m
]

= αWmin

2

[(

2m+1 − 1
)

+ (γ − 1) · 2m
]

.



Making the change of variable j = k − (m + 1) in S2, we
have:

S2 = αWmin

2

∑∞
j=0

[(

2m+1 − 1
)

+ j · 2m
]

(1 − q)j+mq

= αWmin

2

[

(

2m+1 − 1
)

(1 − q)m + 2m(1−q)m+1

q

]

.

By adding S1 to S2 we obtain that the average backoff time
equals

TB =
α(Wminβ − 1)

2q
+

(1 − q)

q
tc, (14)

where

β =
q − 2m(1 − q)m+1

1 − 2(1 − q)
. (15)

Therefore, the average time a packet spends in backoff is
simply the average number of backoff stages it goes through
(1/q) times the average time it spends in each backoff stage,
added to the respective average time spent on collision res-
olution. Note here that the term Wminβ works as an “ef-
fective window size”, scaling the initial contention-window
size according to the maximum backoff stage m and the
success probability q. In the specific case in which the
contention window is constant at every backoff stage, i.e.,

T
i

B = T ∗ = α(W ∗ − 1)/2, ∀k ∈ N, T B(k) is simply
TB(k) = kT ∗ + (k − 1)tc. In this case, the average back-
off time reduces to

TB =
α(W ∗ − 1)

2q
+

(1 − q)

q
tc (16)

If we make m = 0 in (15), i.e., if we fix the contention win-
dow size to the initial contention-window size, we have

TB =
α(Wmin − 1)

2q
+

(1 − q)

q
tc. (17)

In the same way, if the contention window size is con-
stant at every stage k, the variance of the total backoff time
is given by

Var {T B(k)} = Var
{

∑k

i=1T
i

B + (k − 1)tc

}

= Var {kT ∗ + (k − 1)tc} = (T ∗ + tc)
2 (1−q)

q2

=
[

α(W∗−1)
2 + tc

]2
(1−q)

q2 . (18)

In the case of the binary exponential backoff algorithm,
we need to apply the same techniques we applied before to
squared and cross-product terms. For conciseness, we omit
here the intermediate steps and give the final expression ob-
tained after some algebra:

Var
{

TB(k)
}

=

[

α(Wminγ − 1)

2
+ tc

]2
(1 − q)

q2
, (19)

where

γ = {[2q2−4q+1−m(−1+2q)q][2(1−q)]m+2q2}
(−1+2q)2 , (20)

and, if we make m = 0 we obtain Eq.(18).
Given the backoff time characterization, the average ser-

vice time equals

T = TB + ts, (21)

where ts is the time to successfully transmit a packet. Be-
cause ts is a constant,

Var{T (k)} = Var{T B(k)}. (22)

Note that the service time distribution is the same as that of
the backoff time, which, in this case, is a non-linear func-
tion of a geometric random variable with parameter q.

3.2. Channel Probabilities

The model we have just presented is applicable when-
ever the channel state probabilities p = [pi pc ps]

T driv-
ing a node’s backoff operation are known. In this Section,
we compute the values of p for a saturated, single-hop ad
hoc network under ideal channel conditions. For this pur-
pose, we rely on the work by Bianchi [2], which provides
a model to evaluate the saturation throughput of the IEEE
802.11 MAC protocol under the hypothesis of ideal chan-
nel conditions (i.e., no hidden terminals and capture). Fol-
lowing Bianchi’s analysis, we also assume a fixed number
of nodes, with each node always having a packet available
for transmission, i.e., the transmission queue of each node
is assumed to be always nonempty. The key approximation
of his model, which we adopt here too, is that each packet,
at each transmission attempt, collides with constant and in-
dependent probability p = 1−q regardless of the number of
retransmissions suffered2. This probability is called the con-
ditional collision probability, meaning that this is the prob-
ability of a collision experienced by a packet being trans-
mitted on the channel. Bianchi modeled the stochastic pro-
cess representing the backoff time counter for a given node
as a bidimensional discrete-time Markov process. Accord-
ing to his development, the probability τ that a node trans-
mits in a randomly chosen slot time is [2]

τ =
2(1 − 2p)

(1 − 2p)(Wmin + 1) + pWmin(1 − (2p)m)
, (23)

which is a function of the conditional collision probability
p, still unknown. To find the value of p, it is sufficient to note
that the probability p that a transmitted packet faces a col-
lision in the channel is the probability that at least one of

2 Note that the probability q is the same as the one we used in Section
3.1.



the n − 1 remaining nodes transmit in a given time slot. By
the independence assumption given above, each transmis-
sion experiences the system in the same state, i.e., in steady
state. Each remaining node transmits a packet with proba-
bility τ in steady state. Therefore,

p = 1 − (1 − τ)n−1. (24)

Equations (23) and (24) form a nonlinear system in the
two unknowns τ and p that can be solved using numeri-
cal techniques. In fact, Bianchi showed [2] that this system
has a unique solution. To make things simpler, and to bet-
ter understand the effect of different parameters on these
two probabilities, we will find an approximate solution to
this nonlinear system by linearizing both equations. For this
purpose, let γ = 1 − τ be the probability that a node does
not transmit in a randomly chosen slot time, i.e.,

γ =
(1 − 2p)(Wmin − 1) + pWmin(1 − (2p)m)

(1 − 2p)(Wmin + 1) + pWmin(1 − (2p)m)
. (25)

Given the continuity of both γ(p) and its derivatives3 in
the interval p ∈ (0, 1), the Taylor series expansion of γ(p)
at p = 0 is given by

γ(p) =
Wmin − 1

Wmin + 1
+

2Wmin

(Wmin + 1)2
p + O(p2), (26)

where O(p2) accounts for the second and high order terms
in the Taylor series expansion. Hence, a first order approxi-
mation of γ(p) is simply

γ(p) =
Wmin − 1

Wmin + 1
+

2Wmin

(Wmin + 1)2
p, (27)

which, in terms of q = 1 − p becomes

γ(q) =
−2Wmin

(Wmin + 1)2
q +

W 2
min + 2Wmin − 1

(Wmin + 1)2

≈
−2Wmin

(Wmin + 1)2
q + 1. (28)

Given that τ = 1 − γ, we have

τ(q) =
2Wmin

(Wmin + 1)2
q =

2Wmin

(Wmin + 1)2
(1 − p). (29)

Figure 2 shows the comparison between the nonlinear re-
lationship of (23) with the linear approximation of (29) for
DSSS parameters (Wmin = 32 and m = 5). The error in
the approximation becomes more significant as the colli-
sion probability grows. However, given the range at which
τ is varying, the error tends to be very small. In Section 5
we evaluate the performance of our approximation.

3 Continuity with respect to the critical value p = 1/2 can be shown by
simply rewriting γ(p) in the same way as it was done for τ(p) in [2].
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Figure 2. Transmission probability τ : comparison
of nonlinear relationship versus linear approxima-
tion.

We can now substitute our approximation of τ(q) in the
equation that relates the probability that no node is transmit-
ting at any randomly chosen slot time, i.e., q = (1− τ)n−1.
Because 2Wmin/(Wmin + 1)2 << 1 and 0 < q < 1, we
have that

q =

[

1 −
2Wmin

(Wmin + 1)2
q

]n−1

≈ 1 −
2(n − 1)Wmin

(Wmin + 1)2
q

≈
(Wmin + 1)2

(Wmin + 1)2 + 2(n − 1)Wmin
,

which leads to the following approximation for p:

p =
2Wmin(n − 1)

(Wmin + 1)2 + 2Wmin(n − 1)
. (30)

Equations (29) and (30) clearly show the decoupling we
have achieved by linearizing the original system of equa-
tions. Figure 3(a) shows the conditional collision proba-
bility p as a function of the number of nodes n and the
minimum congestion window Wmin. As we can see, for
the current parameters of the IEEE 802.11 protocol, i.e.,
Wmin = 16 (FSSS) and Wmin = 32 (DSSS), the colli-
sion probability is more than 50% if the number of nodes in
the wireless LAN exceeds 20 nodes.
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Figure 3. (a) Collision probability as a function
of the number of nodes. (b) Conditional channel
probabilities.



We can now turn to the problem of finding the condi-
tional channel probabilities, represented here by the vector
p. For this purpose, let Ptr be the probability that there is at
least one transmission in the considered time slot. Because
we are considering the events experienced by a node dur-
ing its backoff period, only the remaining n − 1 nodes can
be contending for channel access. Therefore, because each
of the remaining n − 1 nodes transmits a packet with prob-
ability τ at steady state, we have

Ptr = 1 − (1 − τ)n−1. (31)

The probability Psuc that a transmission occurring on the
channel is successful is given by the probability that exactly
one node transmits on the channel, conditioned on the fact
that at least one node transmits, i.e.,

Psuc =

(

n−1
1

)

τ(1 − τ)n−2

Ptr

=
(n − 1)τ(1 − τ)n−2

1 − (1 − τ)n−1
. (32)

Therefore, the probability that a successful transmission
occurs in a given time slot is ps = P{Es} = PtrPsuc. Ac-
cordingly, pi = P{Ei} = 1 − Ptr and pc = P{Ec} =
Ptr(1 − Psuc). Figure 3(b) shows these three probabilities
as a function of n, the number of nodes. Finally, for the time
intervals ts and tc, we follow the definition given by Bianchi
[2], where4

ts = RTS + SIFS + τ + CTS + SIFS + τ + H +

+ E{P} + SIFS + τ + ACK + DIFS + τ, (33)

where E{P} = P for fixed packet sizes, and

tc = RTS + DIFS + τ. (34)

4. Model Validation

In this section we evaluate the accuracy of our model in
predicting the first two moments of a node’s service time in
a single-hop IEEE 802.11 WLAN. For this purpose, we use
the simulator Ns-2 [9] to run simulations on network sizes
varying from 8 to 56 nodes (in steps of 8). All nodes trans-
mit to some other node in the network according to the same
CBR source rate with fixed packet sizes of 1500 bytes (IP
packet). We pick a source rate high enough to saturate the
nodes for each network size. Nodes are randomly placed
in an area of 20 × 20 meters and have no mobility. Each
run corresponds to 6 minutes of data traffic. We trace each
node in the network and compute both the mean and vari-
ance of its service time. We repeat the experiment for 20 dif-
ferent seeds. We do that not just for statistical reasons, but

4 It is shown in [6] that, for correct floor acquisition to occur, CTS pack-
ets have to be at least the same size as RTS packets plus the turnaround
time plus twice the propagation delay, which does not happen in the
IEEE 802.11 protocol. We will ignore this and consider that collisions
involve RTS packets only.

also because of the fairness problem inherent in the IEEE
802.11 DCF. As already reported in the literature [1, 11], the
available bandwidth is not equally shared among competing
nodes under the IEEE 802.11 protocol. We noticed the same
behavior during our simulations in some of the randomly-
chosen topologies, where some nodes were more successful
in acquiring the channel than others. Regarding the physi-
cal layer, we use Direct-Sequence Spread Spectrum (DSSS)
with a raw bit rate of 2Mbps. Table 4 summarizes the pa-
rameters used for our simulations. FHSS standard-specific
paramaters are listed for completeness (ACK Timeout and
CTS Timeout are not specified in the standard). We com-

DSSS FHSS
Wmin 32 16
Wmax 1024 1024
MAC Header 34 bytes 34 bytes
ACK 38 bytes 30 bytes
CTS 38 bytes 30 bytes
RTS 44 bytes 36 bytes
Slot Time 20 µsec 50 µsec
SIFS 10 µsec 28 µsec
DIFS 50 µsec 128 µsec
ACK Timeout 212 µsec —
CTS Timeout 348 µsec —

Table 1. Physical Layer Parameters.

pute the average service time and jitter of each node in each
run, and take the average over all nodes in the network. We
repeat this computation for all 20 seeds and report the re-
sults averaged over the 20 seeds. Figure 4(a) shows the nu-
merical results for the average service time for both sim-
ulations and analytical models (linear and nonlinear). As
we can see, our analytical model performs quite well, es-
pecially in small to medium-size networks, providing us
with an upper bound on the average service time. Regard-
ing the increasing discrepancy observed as the number of
nodes grows, we note two main reasons. First, in our analyt-
ical model, a packet can backoff infinitely in time, whereas
in simulations (as in the standard) retry counters help the
MAC determine when it is no longer worth it to continue
attempting to transmit a packet. Therefore, only packets
that were not discarded had their service time considered
in the statistics. The second reason stems from our assump-
tion that periods of collision experienced by colliding nodes
have the same duration as the periods in which the channel
is sensed busy by noncolliding nodes. As mentioned before,
this is not necessarily true, because the CTS timeout is usu-
ally longer than the assumed tc, which lasts RTS + DIFS
+ τ µsec for noncolliding nodes. Fortunately, this discrep-
ancy is practically irrelevant if we note the high variance
(jitter) of the service time as the number of nodes grows,
and the fact that the average service time predicted by both
linear and nonlinear models are within standard deviation
of simulation results, as shown in Figure 4(a). Another im-
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Figure 4. (a) Average service time: error bars
show standard deviation (jitter) in both simula-
tions and analytical model. (c) Jitter magnitude.

portant result is shown in Figure 4(b), where we can see
how accurate our analytical model is in predicting the mag-
nitude of the jitter experienced by each node in the network.
The similarity is quite striking, with the jitter predicted by
the nonlinear model a little bit less than that in simulations.
From Figures 4(a), and 4(b), we see that the linear model is
a more conservative model, providing higher values for both
delay and jitter. This is due to the fact that, for the same val-
ues of n and Wmin, the probability of having transmissions
and collisions in the channel during a node’s backoff time
is usually higher for the linear model than for the nonlinear
model. Consequently, the delay and jitter are also higher.

5. Performance Evaluation

This section addresses the impact of some of the IEEE
802.11 parameters on the average service time and jitter for
both DSSS and FHSS physical layers, based on the model
we developed in Section 3 for saturated networks. Unless
stated otherwise, the parameters used are the ones in Table
4. First, we consider the impact of the initial contention-
window size on the average service time and jitter. Fig-
ures 5(a) and 5(c) show the results for the DSSS physical
layer and Figures 5(b) and 5(d) show the results for the
FHSS physical layer. From the results, we see that, over-
all, DSSS performs better than FHSS in both average ser-
vice time and jitter. In particular, if we look at the perfor-
mance for their real parameters (Wmin = 32 for DSSS
and Wmin = 16 for FHSS), we see that FHSS average
service time is, roughly speaking, twice the values of the
DSSS physical layer, specially for large networks. DSSS
and FHSS exhibit the same behavior in terms of jitter. An
important observation to be made here is that, as far as de-
lay and jitter in saturated networks is concerned, increas-
ing the initial contention-window size improves the perfor-
mance of the system in both physical layers. Figures 5(e),
5(f), 5(g), and 5(d) show very clearly the impact of the ini-
tial contention-window size on service time and jitter. The

results refer to window sizes of 8, 16, 32, 64, 128, 512, and
1024. Both metrics drop dramatically as we increase the ini-
tial contention-window size to values such as 512 or 1024.
For small to medium-size networks (around 20 nodes) the
jitter is very small and the average service time is practically
constant for window sizes higher than 128. For small val-
ues of window sizes, DSSS still performs better than FHSS.
Their performance becomes similar when window sizes are
bigger than 128.

Figures 6(a), 6(b), 6(c), and 6(d) show the performance
of DSSS and FHSS physical layers for packet sizes of 32,
64, 128, 512, and 1024 bytes (IP packets). We see again
that DSSS outperforms FHSS in both average service time
and jitter. From the graphs, we see that performance is not
very affected for medium-sized networks. However, the im-
pact on system performance is more critical for large net-
works, where a considerable increase in mean service time
and jitter is noticeable as packet size increases. This re-
sult can be explained if we refer to Figure 3(b). In this
Figure, it is shown that, as the number of nodes grows,
the probability of having a successful transmission in the
channel also grows, which directly affects the average slot
size α. Therefore, even though it is commonly stated that
the RTS/CTS mechanism is throughput-effective when the
packet size increases [2], we are facing here a clear trade-off
on delay/throughput performance as the number of nodes
increases. Figures 6(e) and 6(g) show the average service
time and jitter as we vary the slot time size for the case of
the DSSS physical layer. Figures 6(f) and 6(h) show the re-
sults for the FHSS physical layer. Data packet size is fixed
to 1024 bytes. From the graphs, we see that, even though we
have a big packet size, the slot time size has neglible impact
on system performance for both DSSS and FHSS physical
layers. This result parallels the one reported by Bianchi [2],
where throughput does not change much as we vary the slot
time size. The fact is that, the amount of idle channel time
still remains marginal with respect to the time spent in trans-
missions and collisions regardless of how much we increase
the slot size.

Figures 7(a), 7(b), 7(c), and 7(d) show the results quan-
tifying the impact of the maximum backoff stage (param-
eter m) on the service time for DSSS and FHSS physical
layers. The results show that, as far as service time and jit-
ter are concerned, the binary exponential backoff algorithm
can be very harmful in large, saturated networks if the max-
imum backoff stage is high. In both DSSS and FHSS we see
that, the fewer backoff stages, the better is the performance,
specially for large networks. This fact suggests that, in sat-
urated networks where nodes always have a packet ready to
be sent in the head of their queues, the binary exponential
backoff algorithm seems to be inappropriate. In fact, nodes
will constantly have to backoff. However, according to our
results, it is more effective to keep a constant, large con-
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Figure 5. Average service time versus number
of nodes for different initial contention-window
sizes: (a) DSSS (b) FHSS. Jitter versus number
of nodes for different initial contention-window
sizes: (c) DSSS (d) FHSS. Average service time
versus initial contention-window size for different
network sizes: (e) DSSS (f) FHSS. Jitter versus ini-
tial contention-window size for different network
sizes: (g) DSSS (h) FHSS.
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Figure 6. Average service time versus packet size
for different network sizes: (a) DSSS (b) FHSS. Jit-
ter versus packet size for different network sizes:
(c) DSSS (d) FHSS. Average service time versus
slot size for different network sizes: (e) DSSS (f)
FHSS. Jitter versus slot size for different network
sizes: (g) DSSS (h) FHSS.
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Figure 7. Average service time versus maximum
backoff stage: (a) DSSS (b) FHSS. Jitter versus
maximum backoff stage: (c) DSSS (d) FHSS.

tention window size than to increase the size of the con-
tention window exponentially. This way, nodes will be more
aggressive in acquiring the floor, providing lower delays.

6. Conclusions

In this paper, we presented an analytical model for com-
putation of the average service time and jitter experienced
by a packet when transmitted in a saturated ad hoc network
in which the IEEE 802.11 DCF is used. Using a bottom-
up approach, we built the first two moments of the service
time based on the IEEE 802.11 binary exponential backoff
algorithm and the events underneath its operation. We pro-
vided a general model that can be applied to many scenar-
ios where the channel state probabilities that drive a node’s
backoff operation are known. Here, we applied our model to
saturated single-hop networks with ideal channel conditions
and we carried out a performance evaluation of a node’s av-
erage service time and jitter for the DSSS and FHSS physi-
cal layers. According to our results, as far as delay and jitter
are concerned, DSSS performs better than FHSS. In addi-
tion to this, we found that, in contrast to previous studies on
throughput in which the RTS/CTS mechanism was found to
be practically independent of the initial contention-window
size and network size, these parameters have a major impact
on system performance if delay is the metric in which we
are interested. In this case, the higher the initial contention-
window size, the smaller the average service time and jitter
are, especially for large networks. On the other hand, if we
consider packet size, the opposite applies: the smaller the

packet, the smaller the average service time and jitter are.
Regarding the slot time size, we found that it has neglible
impact on delay performance for both DSSS and FHSS. Fi-
nally, for the maximum backoff stage, the binary exponen-
tial backoff algorithm was found to be harmful if both the
maximum backoff stage and the number of nodes in the net-
work are large. As far as delay in saturated IEEE 802.11
networks is concerned, the binary exponential backoff al-
gorithm seems to be inapropriate, and a large and constant
contention window size was showed to be more efficient,
with packet sizes being selected according to the network
size.
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